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Abstract. In the presence of a velocity-dependent Kisslinger potential, the partial-wave, time-independent
Schrödinger equation with real boundary conditions is written as an equation for the probability density.
The changes in the bound-state energy eigenvalues due to the addition of small perturbations in the local as
well as the Kisslinger potentials are determined up to second order in the perturbation. These changes are
determined purely in terms of the unperturbed probability density, the perturbing local potential, as well
as the Kisslinger perturbing potential and its gradient. The dependence on the gradient of the Kisslinger
potential stresses the importance of a diffuse edge in nuclei. Two explicit examples are presented to examine
the validity of the perturbation formulas. The first assumes each of the local and velocity-dependent parts
of the potential to be a finite square well. In the second example, the velocity-dependent potential takes
the form of a harmonic oscillator. In both cases the energy eigenvalues are determined exactly and then
by using perturbation theory. The agreement between the exact energy eigenvalues and those obtained by
perturbation theory is very satisfactory.

PACS. 03.65.Ge Solutions of wave equations: bound states – 31.15.Md Perturbation theory

1 Introduction

In quantum mechanics there are relatively few physically
interesting problems that may be solved exactly. Con-
sequently, approximation methods are vitally important
in many applications of the theory. In non-relativistic
quantum mechanics, nearly all the approximation schemes
are developed starting from the Schrödinger equation.
For small perturbations in the local potential, the time-
independent perturbation theory estimates corrections to
the bound-state energies and the corresponding wave func-
tions by exploiting the orthogonality of different wave
functions [1]. However, a different approach is presented
in [2], which recasts the partial-wave, time-independent
Schrödinger equation with real boundary conditions as an
equation for the probability density. Up to third order in
the perturbation, the changes in the bound-state energies
are expressed purely in terms of the unperturbed proba-
bility density and the perturbing potential corresponding
to a local potential only. Another work [3] derived a form
of perturbation theory where the shift in energy and the
change in the wave function of a state are obtained with-
out a need for information about the other states.

The Schrödinger equation with a non-constant coeffi-
cient by the second-order derivative is an interesting and
useful model for describing many physical problems. Such
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an equation may be used to describe the motion of a parti-
cle with a spatially varying effective mass moving in some
potential [4,5]. The effective-mass approximation is an im-
portant tool used for the determination of the electronic
properties of semiconductors [6] and quantum dots [7]. An-
other important application of the Schrödinger equation
with a non-constant term is in the field of nuclear physics.
Kisslinger developed a velocity-dependent potential that
was successful in describing the scattering of mesons off
complex nuclei, which predicted the predominantly p-wave
nature of the elementary pion-nucleon coherent scatter-
ing [8]. The potential is expressed as

∇ · (ρ∇ψ) = ρ∇2ψ +∇ρ · ∇ψ . (1)

Generally ρ represents the spatially varying nuclear den-
sity. Consequently, the second term on the right is sensi-
tive to the diffuse edge in nuclei. Further, the first term
is proportional to the kinetic energy and combines with
the kinetic-energy term in the Schrödinger equation. For
a particle of mass m and energy E moving in a reduced
potential U(r) the time-independent Schrödinger equation
including the Kisslinger term may be expressed as

(1−ρ)u′′(r)−
[
u′(r)− u(r)

r

]
ρ′(r) = [U(r)−E]u(r), (2)

where u(r) is a reduced bound-state wave function, E
and U(r) are measured in units of �

2/2m. Finally, the
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prime denotes differentiation with respect to the radial
variable r.

In sect. 2 we shall outline the boundary conditions that
U(r) and ρ(r) must satisfy so that eq. (2) has physically
acceptable solutions. The probability density equation
that includes the non-constant term ρ(r) will be developed
in sect. 3 and some of its properties will be discussed. In
this paper, it is our aim to develop a time-independent per-
turbation theory when small, spherically symmetric per-
turbations in the local and velocity-dependent potentials
are added. This will be done in sect. 4 in the framework
of the probability density equation. It will also be shown
that the expressions for the energy corrections are valid for
an arbitrary orbital angular-momentum quantum num-
ber l. In sect. 5 we shall consider two explicit examples,
square well and harmonic-oscillator potentials, to demon-
strate the validity of the derived expressions.

2 Boundary conditions on the potentials

For eq. (2) to have physically acceptable solutions the po-
tential terms must satisfy the following conditions [9,10]:

∫ ∞

0

r|U(r)|dr < ∞ ,

∫ ∞

0

r2|U(r)|dr < ∞ . (3)

and∫ ∞

0

r|ρ′′(r)|dr < ∞ ,

∫ ∞

0

r2|ρ(r)|dr < ∞ . (4)

The conditions in eq. (3) suggest that U(r) diverges slower
than 1/r for small r and decays faster than 1/r3 at infinity.
However, for the Kisslinger potential, the first equation
in (4) demands that ρ′(r) diverges less than 1/r close to
the origin. This condition is satisfied if in the vicinity of
the origin we have ρ(r) ≈ b0r

p where p > 0 and b0 is
a constant. Considering eq. (2) it is clear that ρ(r) must
be bounded away from 1. Hence, to satisfy the boundary
condition on the velocity-dependent part of the potential
we must have ρ(r) < 1 for all r. The second condition
in (4) implies that ρ(r) falls off faster than 1/r3 for large
distances. The above boundary conditions guarantee that
the limr→0 u(r) = 0.

3 The probability density equation

For stationary problems where the reduced bound-state
wave function, u(r), is real one may work with the prob-
ability density P (r) defined as

P (r) = [u(r)]2. (5)

Using the above equation we may transform the
Schrödinger equation in (2) into one for the probabil-
ity density. Multiplying (2) by 2u3 and adding the term

2(1 − ρ)u2u′2 to both sides it is straightforward to show
that P (r) satisfies the following differential equation:

(1− ρ)
[
PP ′′−P ′2

2

]
− 2P 2(U−E)− ρ′PP ′ +

2ρ′P 2

r
= 0 .

(6)
Since the wave function u(r) vanishes at the origin, our

first boundary condition on P (r) reads

P (0) = 0. (7)

From eq. (6) and the condition above it follows that:

P ′(0) = 0. (8)

Finally, the probability of finding the particle somewhere
must be unity, hence we impose the condition∫ ∞

0

P (r) dr = 1. (9)

4 Energy corrections

In the framework of the probability density equation given
in (6) one cannot exploit the orhogonality of wave func-
tions directly. We shall therfore adopt a similar procedure
to that presented in [2].

Suppose that the probability density eq. (6) is soluble
for some unperturbed reduced local and Kisslinger po-
tentials U0(r) and ρ0(r) with P0(r) as a solution. Then
introduce local and Kisslinger perturbations λU1(r) and
λρ1(r) respectively, so that

U(r) = U0(r) + λU1(r), ρ(r) = ρ0(r) + λρ1(r) , (10)

where U(r) and ρ(r) are real functions of the radial vari-
able r. Now expand the probability densities and the
eigenenergies in power series in λ as

P (r) = P0(r) + λP1(r) + λ2P2(r) + λ3P3(r) + ... ,

E = E0 + λE1 + λ2E2 + λ3E3 + ... . (11)

For bound states the probability density must be normal-
ized to unity for all values of the expansion parameter λ.
It then follows from (9) that:∫ ∞

0

Pn(r)dr = δn0. (12)

Further, as we are dealing with bound states, the indi-
vidual Pn(r) terms must decrease exponentially at large
r, while the behavior of each at the origin is governed by
eqs. (7) and (8).

Upon substituting for P (r) and E in (6) using (11), the
resulting differential equation is satisfied provided that the
coefficient of each power of λ vanishes for all r. Setting
the coefficient of λ0 to zero results in the unperturbed
equation

(1− ρ0)
[
P0P

′′
0 − (P ′

0)
2

2

]
− 2P 2

0 (U0 − E0)

−ρ′0 P0P
′
0 + 2

ρ′0 P 2
0

r
= 0. (13)

The dependence of the variables on r has been omitted
for clarity of presentation.
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4.1 First-order energy and probability density
corrections

The coefficient of λ1 reads

−4P0P1(U0 − E0)− 2P 2
0 (U1 − E1)

+(1− ρ0) [P0P
′′
1 + P ′′

0 P1 − P ′
0P

′
1]

+ρ′0

[
4P0P1

r
− P ′

0P1 − P0P
′
1

]
+ ρ1

[
P ′2

0

2
− P0P

′′
0

]

+ρ′1

[
2P 2

0

r
− P0P

′
0

]
= 0 . (14)

Substituting for (U0−E0) using eq. (13) and then dividing
by P0, we obtain

2P0(U1 − E1) = (1− ρ0)
d
dr

[
P ′

1 −
P1P

′
0

P0

]

+ρ′0

[
P1P

′
0

P0
− P ′

1

]
+ ρ1

[
P ′2

0

2P0
− P ′′

0

]
+ ρ′1

[
2P0

r
− P ′

0

]
.

(15)

Integrating the above leads to

2E1

∫ ∞

0

P0dr = 2
∫ ∞

0

U1P0 dr

−
{
(1− ρ0)

[
P ′

1 −
P1P

′
0

P0

]}∞

0

−
∫ ∞

0

[
ρ1

P ′2
0

2P0
+ ρ′1

2P0

r

]
dr. (16)

In the neighborhood of the origin, the term P ′
0/P0 be-

haves like 1/r, while P1 vanishes at least as fast as r2. On
the other hand, as r → ∞, P ′

0/P0 is finite and P1 → 0.
Consequently, the second term on the right is zero. Using
eq. (12) we express the first-order energy correction as

E1 =
∫ ∞

0

U1(r)P0 dr −
∫ ∞

0

[
ρ1(r)

P ′2
0

4P0
+ ρ′1(r)

P0

r

]
dr.

(17)
Clearly, the first-order energy correction is given purely
in terms of the unperturbed probability density, the per-
turbation in the local potential, the perturbation in the
velocity-dependent potential and its gradient. The depen-
dence on ρ′ reflects the importance of a diffuse edge in
nuclei. This is particularly important in light nuclei.

In order to obtain the first-order correction of the prob-
ability density one should carry out an indefinite integra-
tion of eq. (15) which leads to

d
dr

(
P1

P0

)
=

2
(1− ρ0)P0

∫ r

0

(U1 − E1)P0dr′

− 1
(1− ρ0)P0

∫ r

0

(
ρ1

P ′2
0

2P0
+ ρ′1

2P0

r′

)
dr′.

(18)

Integrating with respect to r results in

P1(r) = P0

∫ r

0

dr′

(1− ρ0(r))P0

∫ r′

0

[
2(U1(r)− E1)P0

−ρ1(r)
P ′2

0

2P0
− ρ′1(r)

2P0

r′′

]
dr′′

−P0

∫ ∞

0

P0 dr

∫ r

0

dr′

(1− ρ0(r))P0

×
∫ r′

0

[
2(U1(r)− E1)P0 − ρ1(r)

P ′2
0

2P0
− ρ′1(r)

2P0

r′′

]
dr′′,

(19)

where the constant of integration, multiplying P0 in the
second line of the last equation, has been obtained by
demanding that the integral of P1 over all r must vanish
as required by eq. (12).

4.2 Second-order corrections

The coefficient of λ2 reads

2E2P
2
0 − (4P0P2 + 2P 2

1 )(U0 − E0)− 4P0P1(U1 − E1)

+(1− ρ0)
[
P0P

′′
2 + P ′′

0 P2 + P1P
′′
1 − P ′

0P
′
2 −

P ′2
1

2

]

−ρ′0

[
P0P

′
2 + P ′

0P2 + P1P
′
1 −

2P 2
1

r
− 4P0P2

r

]
+ρ1 [P ′

0P
′
1 − P ′′

0 P1 − P0P
′′
1 ]

+ρ′1

[
4P0P1

r
− P0P

′
1 − P ′

0P1

]
= 0. (20)

Substituting for (U0 −E0) and 3(U1 −E1) using eqs. (13)
and (14) respectively, and then dividing by P0, one
arrives at

2E2P0 − P1(U1 − E1) =

(1− ρ0)
d
dr

[
P ′

0P2

P0
+

P ′
1P1

2P0
− P ′

0P
2
1

2P 2
0

− P ′
2

]

−ρ′0

[
P ′

0P2

P0
+

P ′
1P1

2P0
− P ′

0P
2
1

2P 2
0

− P ′
2

]

+ρ1

[
3P ′2

0 P1

4P 2
0

− P ′
0P

′
1

P0
− P ′′

0 P1

2P0
+ P ′′

1

]

−ρ′1

[
P ′

0P1

2P0
+

P1

r
− P ′

1

]
. (21)

Integrating the above over all r and using the normal-
ization condition (12) the second-order energy correction
may be put in the form

E2 =
1
2

∫ ∞

0

U1(r)P1 dr

+
1
2

∫ ∞

0

[
ρ1(r)

(
P1P

′2
0

4P 2
0

−P ′
1P

′
0

2P0

)
−ρ′1(r)

P1

r

]
dr.

(22)
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As before, the correction depends on the perturbations
and the gradient of the Kisslinger perturbing potential.
The second-order probability density correction may be
determined by evaluating the indefinite integral of (21)
and then integrating the resulting with respect to r. This
leads to

P2 = P0

∫ r

0

dr′

(1− ρ0)P0

∫ r′

0

[
P1(U1 − E1)− 2E2P0

+ρ1
P ′2

0 P1

4P 2
0

− ρ′1
P1

r

]
dr′′ +

P 2
1

4P 2
0

+ CP0 , (23)

The constant of integration, C, is found by demand-
ing that the integral of P2(r) over all r must vanish. The
third-order energy correction may be obtained in the same
manner, however the algebra is more involved.

All the perturbation results obtained so far are inde-
pendent of the unperturbed local potential U0(r). There-
fore, the corrections obtained are also valid for any
angular-momentum quantum number l, as the centrifugal
barrier may be regarded as a part of U0(r).

5 Soluble potentials

In this section we shall determine the exact energy eigen-
values for eq. (2) using soluble potentials and, for simplic-
ity, we shall consider the s-wave case.

5.1 Finite square-well potential

Using this type of potential, the differential equation in-
volved may be solved exactly allowing an accurate deter-
mination of the energy eigenvalues. Such energies are then
compared with the corresponding ones obtained using the
formalism of the perturbation theory derived above. Our
ansatz for the potentials and the corresponding perturba-
tions are as follows:

U(r) = U0(r) + λU1(r), ρ(r) = ρ0(r) + λρ1(r) , (24)

where

U0(r) = −U0 , U1(r) = −U1 , r < a ,

U0(r) = 0 , U1(r) = 0 , r > a , (25)

ρ0(r) = ρ0 , ρ1(r) = ρ1 , r < a ,

ρ0(r) = 0 , ρ1(r) = 0 , r > a , (26)

where a = 1 is the common radius of both potentials. Ob-
viously, the local and velocity-dependent parts as well as
the corresponding perturbations are spherically symmet-
ric functions of the radial variable r. It is worth noting
that the wave function is continuous at r = a. However,
there is a finite jump in the derivative of the wave function
at the boundary due to the sharp edge of the Kisslinger
potential. The behavior of the derivative of the wave func-
tion at the boundary can be determined by integrating the

Schrödinger equation across the boundary from a − ε to
a + ε and then taking the limit as ε → 0. The resulting
condition is

(1− ρ0)R′
<(r) = R′

>(r), (27)

where R(r) = u(r)/r is the radial wave function and
R′

<(r), R′
>(r) are the derivatives of the wave functions

corresponding to r less and greater than a, respectively.
Taking U0 = 2.2, ρ0 = 0.5 and U1 = ρ1 = 0, that is,
the perturbation is switched off, it is only possible to sus-
tain one bound state whose energy is −0.0103 in units of
�

2/2m. Alternatively, one may solve eq. (6) directly in-
side and outside the well and then match the probability
density solutions at the boundary.

Now let us introduce perturbations to the local and
velocity-dependent potentials namely U1 = 0.01 and
ρ1 = 0.01, respectively. Using eq. (17) the first-order en-
ergy correction is E1 = −0.0043 in units of �

2/2m. Fur-
ther, according to eq. (22) the second-order correction
is E2 = −0.0005, which is only about 11% of the first-
order correction. So up to and including second order in
the perturbation the bound-state energy is E = −0.0151.
The exact energy eigenvalue is obtained by solving the
Schrödinger equation with U0 = 2.21 and ρ0 = 0.51 and
U1 = ρ1 = 0. This gives −0.0144 in good agreement with
−0.0151 obtained using the perturbation approach. The
absolute percentage difference is only 5%.

At small perturbations the agreement is expected to
be good. However, as the energy increases the discrepancy
tends to grow larger. This can be seen by considering the
following transformation on the wave function [11]:

u(r) =
χ(r)√
1− ρ(r)

, (28)

which transforms eq. (2) into

χ′′(r) + [E − Ue(r)]χ(r) = 0, (29)

where Ue(r) is an effective potential that depends on the
energy, viz.

Ue(r) = − 1
1− ρ(r)

[
ρ′′(r)
2

+
(ρ′(r))2

4(1− ρ(r))

+
ρ′(r)

r
− U(r) + ρ(r)E

]
. (30)

Obviously, the cross terms between U(r), E and ρ(r) can
be ignored only when the perturbations are small. It is
worth noting that the first- and second-order corrections
in eqs. (17) and (22) are linear in U1(r) and ρ1(r) and
contain no cross terms. Figure 1 shows the unperturbed
probability density (solid line) and the corresponding first-
order correction (dotted line), which becomes negative so
that eq. (9) is satisfied. The discontinuity of the derivative
at the boundary is clear.

6 Harmonic-oscillator potential

Here we shall take the local potential to be a finite square
well as before, while the velocity-dependent part will be
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r

0.05

0.10

0.15

Probability
Density

Fig. 1. The unperturbed probability density (solid line) when
the velocity-dependent term and the local potential are as-
sumed to be finite square wells of the common radius a = 1.
The corresponding first-order correction to the probability den-
sity (dotted line). Note that the first-order correction becomes
negative. Further, the discontinuity of the derivative at r = 1
is clear.

assumed to have a harmonic-oscillator behaviour, namely

ρ(r) = ρ0 r2, r < a ,

= 0 , r > a . (31)

This potential demonstrates better the effect of the deriva-
tive of the potential than the finite square well considered
earlier. Substituting for the potentials in (2) and solving
the resulting differential equation results in the following
solutions:

v(r) = 2F1(a, b, c, η) , r < a ,

= De−λr , r > a, (32)

where 2F1(a, b, c, η) is the hypergeometric function, which
upon evaluating for a, b, c and η becomes

u(r) = Cr

[
1− 1

6
(U0 + E) r2

+
1

120
(U0 + E)(U0 + E − 10ρ0) r4

+
1

5040
(U0 + E)(U0 + E − 10ρ0)

×(U0 + E − 28ρ0) r6 + · · ·
]

, (33)

where C and D are constants that are determined us-
ing the appropriate boundary conditions at the boundary.
The solution for r < a is a series with an infinite number
of terms unless we terminate the series by setting one of
the factors to zero. For example, let E = 10ρ0 − U0. For
ρ0 = 0.26 the exact energy eigenvalue is −0.0174, in units
of �

2/2m, corresponding to U0 = 2.62. Upon the introduc-
tion of the perturbing potentials ρ1(r) = ρ1 r2 = 0.01 r2

and U1 = 0.12, then using eq. (17), the first-order energy
correction is −0.0188, while eq. (22) yields for the second-
order correction a value of −0.0055. Thus, the eigenenergy
up to and including the second-order correction is −0.0417

1 3 5 7
r

0.05

0.10

0.15

0.20

Probability
Density

Fig. 2. The unperturbed probability density (solid line) when
the velocity-dependent term takes the form of a harmonic oscil-
lator, while the local potential is assumed to be a finite square
well. The corresponding first-order correction to the probabil-
ity density (dotted line). Note that the first-order correction
becomes negative. Further, the discontinuity of the derivative
at r = 1 is clear.

in units of �
2/2m. However, an exact energy eigenvalue

of −0.0379 is obtained corresponding to ρ0 = 0.27 and
U0 = 2.74. The two values are in good agreement. The ab-
solute percentage difference is about 10%. Figure 2 shows
the unperturbed probability density (solid line) and the
corresponding first-order correction (dotted line), which
becomes negative so that the boundary condition in (9)
is satisfied. Further, the discontinuity at the boundary,
due to the discontinuity in the velocity-dependent part, is
evident.

7 Discussion and conclusions

In this paper we have considered the partial-wave, time-
independent Schrödinger equation in the presence of a
velocity-dependent potential, which gives rise to a non-
constant term by the second-order derivative. For station-
ary problems, where the potential is real, this equation has
been written as an equation for the probability density. We
have developed expressions for the first- and second-order
energy shifts when spherically symmetric purturbations
are added to the local and Kisslinger potentials. The de-
rived expressions for the eigenenergy corrections are given
in terms of the unperturbed probability density, the per-
turbation in the local potential, the Kisslinger perturbing
potential and its gradient. No direct information regard-
ing the unperturbed potentials are required. Further, the
eigenfunctions for other states are not employed. The de-
pendence on the gradient of the velocity-dependent poten-
tial stresses the importance of a diffuse edge in nuclei.

In order to test the validity of the derived expressions,
two explicit examples were considered. In the first, each of
the local and Kisslinger potentials was taken to be a finite
square well of radius a = 1. Such forms of the potentials
allow an exact determination of the energy eigenvalues.
Upon the introduction of small perturbations in the poten-
tials, perturbation theory formulas were used to calculate
the energy eigenvalues up to and including the second-
order correction. For small perturbations the agreement



448 The European Physical Journal A

between the exact and approximate values is found to be
very satisfactory.

The energy corrections in eqs. (17) and (22) are lin-
ear in the potential perturbations ρ1(r) and U1(r). How-
ever, by examining the transformed equation (29), where
the potential becomes energy dependent, it can be seen
that there are cross terms in ρ(r) with E and U(r). Such
terms are negligible when the perturbations in the poten-
tial are small. Consequently, the agreement between the
exact eigenvalues and the approximate ones is better at
small perturbing potentials and low energies.

In the second example the velocity-dependent poten-
tial is taken to have the form of a harmonic oscillator,
namely ρ1(r) = ρ1r

2. This demonstrates better the ef-
fect of the derivative of ρ(r) which is important in nuclear
physics as nuclei, especially the light ones, have a diffuse
edge. The Schrödinger equation was solved exactly and the
results were in good agreement with the values obtained
by the perturbation theory approach.

All the corrections obtained for the eigenenergies and
probability densities are independent of the unperturbed
local potential U0(r). This suggests that the corrections
are valid in the presence of a centrifugal barrier term which
may be contained in U0(r).

The Schrödinger equation with a non-constant term
by the second-order derivative has been the interest of
many research fields in recent years. In addition to nuclear
physics, where the non-constant term may arise from a

spatially varying nuclear density, such an equation has
been used to describe a particle with a spatially-dependent
effective mass. The derived perturbation results may also
be applied in such models.

The author would like to thank Prof. C. Wilkin for reading the
manuscript and making helpful comments on it.
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